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1 Aim

• Given a sample containing (fake) radioactive 14C glucose and 3H ATP:
– determine concentration of glucose and ATP.

∗ Given that both concentrations lie between 1mM and 10mM.
∗ Given that ε260

ATP = 1.57× 104 mol−1 dm3 dm−1

– determine radioactivity of the sample (virtual practical)
– and hence determine the specific radioactivity of ATP and glucose

• 23 samples have glucose and ATP concentrations falling into two distinct classes. They are independently
measured by 23 pairs of students. Determine these concentrations using the class results and assess
precision and accuracy.

2 Reagents and Apparatus Provided

• 15mL sample solution
• 0.1 M Na3PO4 buffer at pH 7.0
• 1mM ABTS
• Glucose Oxidase (100 U/mL) and peroxidase (20 U/mL)
• Solid glucose
• Spectrophotometer

3 Method

3.1 ATP concentration

3.1.1 Dilution

3.1.1.1 Determining scale of dilution

Given that 1mM < ATP < 10mM and that ε260
ATP = 1.57× 104 mol−1 dm3 dm−1, according to A260 = ε260cl:

if no dilution:

1.57× 104 × 0.001 <A260 < 1.57× 104 × 0.01
15.7 <A260

raw < 157

clearly, a 1:100 dilution would be very likely to produce a sensible A260:

0.157 < A260
1:100 dilution < 1.57
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3.1.1.2 Making dilution

5mL of 1:100 diluton is made serially by first fixing 500 µL sample with 4.5mL buffer then mixing 500 µL of
the resulting 1:10 dilution with another 4.5mL buffer.

A preliminary test gives A260
1:100 dilution = 0.503, which is within the range where the spectrophotometer is

accurate, so we made 4 more 1:100 dilutions using the method described above.

3.1.2 Results

See section 4.1

3.2 Glucose concentration

3.2.1 Mechanism

Glucose itself does not have convenient absorption. Thus, glucose oxidase, ABTS and peroxidase is added to
make a green solution (glucose is first oxidised by oxidase to produce gluconic acid and H2O2; peroxidase
then catalyses the reaction between H2O2 and ABTS to produce a green dye).

3.2.2 Determine the volume of enzyme

We want the reaction to ‘virtually’ complete (i.e. > 99% conversion of substrate) in 10 min.

For an enzyme reaction:

−ds
dt

= v − Vmaxs

Km + S

As the reaction approaches completion, s << Km:

−ds
dt

= Vmaxs

Km

Integrating to determine the total time for a given change in s:

−
∫ s1

s0

ds

s
= Vmax

Km

∫ t

0
dt

ln s0

s1
= Vmaxt

Km

For a decrease in s from 100% to 1% in 10 min:

ln 100
1 = Vmax × 10

Km

Vmax = 0.4605Km (mol L−1min−1)

Our assay volume will be 4.0mL, so the amound of enzyme, in U (µmol min−1), will be

amount of enzyme in U = 0.4605×Km × 4.0× 10−3 × 106 = 1842Km

where Km has unit M.
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For GOD, Km = 1 mM, and the provided enzyme concentration is 100U/mL:

Km = 1 mM
minimum amount of enzyme = 1842× 1× 10−3 = 1.84 U
minimum volume of enzyme = 1.84÷ 100 = 0.0184 mL

For POD, Km = 100 µM, and the provided enzyme concentration is 20U/mL:

Km = 100 µM
minimum amount of enzyme = 1842× 100× 10−6 = 0.184 U
minimum volume of enzyme = 0.184÷ 20 = 0.0092 mL

We decided to use an excess amount of enzyme (i.e. 0.1mL for both). This guarantees that the reactions will
complete within 10 min, and makes it easier to make up the 4mL total volume for assay (see section 3.2.4.2).

3.2.3 Determining λmax

Measuring absorbance near λmax reduces error. An 100nmol-glucose-containing (i.e. with 1mL 0.1mM glucose
solution, see section 3.2.4.2) assay result is used. The absorbance in the range 350nm to 450nm is measured,
and λmax = 418 nm. We then used this wavelength for all glucose assays.

3.2.4 Calibration

Calibrate A418 with known glucose concentrations, then we can map A418
sample to the calibration curve to

determine sample glucose concentration.

3.2.4.1 Dilution

• 0.18 g glucose is dissolved in 100mL buffer, which gives 10mM glucose solution (which is handy, as the
maximum possible concentration of glucose in the sample is also 10mM)

• 100mL 0.1mM glucose solution is made by mixing 1mL 10mM glucose solution with 99mL buffer (1:100
dilution).

3.2.4.2 Assay

Assays are made on 4mL mixtures with varying amount of glucose, according to the following table:

ABTS Buffer 0.1mM glucose H2O GOD POD nmol glucose
2mL 0.8mL 1.0mL 0mL 0.1mL 0.1mL 100
2mL 0.8mL 0.8mL 0.2mL 0.1mL 0.1mL 80
2mL 0.8mL 0.6mL 0.4mL 0.1mL 0.1mL 60
2mL 0.8mL 0.4mL 0.6mL 0.1mL 0.1mL 40
2mL 0.8mL 0.2mL 0.8mL 0.1mL 0.1mL 20
2mL 0.8mL 0mL 1.0mL 0.1mL 0.1mL 0

Then the mixture is incubated at 37◦C for 10 minutes (in a theromostatically-controlled water bath), then
A418 is measured.

Every row is repeated 3 times.
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3.2.5 Sample Assay

The sample is diluted 1:100 by mixing 1mL sample with 99mL buffer.

4mL assays are made on 1mL 1:100 dilution 3 times, according to the following table (identical to the assays
used for calibration except that an unknown concentration is used this time)

ABTS Buffer diluted sample GOD POD
2mL 0.8mL 1.0mL 0.1mL 0.1mL

3.2.6 Results

See section 4.2

3.3 Radioactivity Counting (Virtual)

0.2mL sample is mixed with 1.8mL scintillation fluid in a polyvial and placed into the scintillation counter.
The count time is 2min. The results are shown in section 5.5.

4 Our Results

4.1 ATP

(Methods in section 3.1)
A <- c(0.503, 0.513, 0.508, 0.525, 0.516)
c_ATP <- A/1.57e4*100*1000
kable(tibble(`$A^{260}_\\text{1:100 dilution}$`=A, `[ATP] of raw sample (mM)`=c_ATP))

$A^{260}_\text{1:100 dilution}$ [ATP] of raw sample (mM)
0.503 3.203822
0.513 3.267516
0.508 3.235669
0.525 3.343949
0.516 3.286624

Statistical summary of ATP in sample:
x <- c_ATP; n <- length(x); df <- n - 1; t = qt(0.975, df)
c(mean=mean(x), sd=sd(x), SE=sd(x)/sqrt(n), t = t, `t*SE` = t*sd(x)/sqrt(n))

## mean sd SE t t*SE
## 3.26751592 0.05309978 0.02374695 2.77644511 0.06593209

Which gives 95% confidence interval: [ATP] = 3.268± 0.054 mM

4.1.1 Distinguishing between 4.0mM and 4.5mM ATP

The percentage error (coefficient of variance) of this experiment is:

cv = sx

x̄
= 0.054

3.268 = 0.0165
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for x̄ = 4.0 and 4.5, sx = cvx̄ = 0.0661 and 0.0744, respectively.

To distinguish between the two, two sample t test is used. If n measurements are made on each concentration,
then

t = x̄1 − x̄2√
s2

1
n

+ s2
2
n

= 4.5− 4.0√
0.06612 + 0.07442

n

=
√

25.26n

then we can get a list of p values for each n:
n <- 2:8
df <- n - 1
t <- sqrt(25.26 * n)
p <- (1 - pt(t, df)) * 2
names(p) <- paste('n =', n)
round(p, 5)

## n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8
## 0.08898 0.01294 0.00210 0.00036 0.00006 0.00001 0.00000

as n increases, p decreases. When n = 3, p is already less than 0.05.

4.2 Glucose

(Methods in section 3.2)

4.2.1 Calibration

The results are shown below:
A1 <- c(0.952, 0.815, 0.709, 0.496, 0.272, 0)
A2 <- c(1.223, 0.969, 0.704, 0.415, 0.222, 0)
A3 <- c(1.194, 0.919, 0.682, 0.452, 0.236, 0)
A <- c(A1, A2, A3)
glucose = c(100, 80, 60, 40, 20, 0)
kable(tibble(`nmol glucose in 4mL assay` = glucose, `$A^{418}_1$` = A1,

`$A^{418}_2$` = A2, `$A^{418}_3$` = A3))

nmol glucose in 4mL assay $A^{418}_1$ $A^{418}_2$ $A^{418}_3$
100 0.952 1.223 1.194
80 0.815 0.969 0.919
60 0.709 0.704 0.682
40 0.496 0.415 0.452
20 0.272 0.222 0.236
0 0.000 0.000 0.000

To fit a straight line, linear regression is used. The coefficients are shown below:
summary(lm(A ~ 0 + rep(glucose, 3)))

##
## Call:
## lm(formula = A ~ 0 + rep(glucose, 3))
##
## Residuals:
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## Min 1Q Median 3Q Max
## -0.181273 -0.000982 0.005691 0.039277 0.089727
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## rep(glucose, 3) 0.0113327 0.0002387 47.48 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.06132 on 17 degrees of freedom
## Multiple R-squared: 0.9925, Adjusted R-squared: 0.9921
## F-statistic: 2254 on 1 and 17 DF, p-value: < 2.2e-16

which shows there is a linear relationship A418 = 0.01133nglucose with R2 = 0.9921.

Then we can plot it (CI added).
ggplot(data.frame(A, glucose), aes(glucose, A))+

geom_point()+
geom_smooth(formula = y ~ 0 + x, method = 'lm')+
labs(x = 'nmol glucose in 4mL assay', y = expression(A ^ 418),

title = 'Calibrationn Curve for 4mL essay')
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4.2.2 Sample result

Three independent measurements of A418
sample gives 0.863, 0.872 and 0.871. According to the linear relationship

A418 = 0.01133nglucose we can calculate the amount (in nmol) of glucose in 1mL 1:100 dilution, then the
concentration of the raw sample can be calculated easily:
A <- c(0.863, 0.872, 0.871) # sample absorbance
n <- A/0.01133 # nmol glucose in 1 mL 1:100 dilution
(c_glucose_sample <- n * 1e-9 # converting to mol/mL (1:100 dilution)

/ 1e-3 # converting to M (1:100 dilution)
* 100 # in M (raw sample)
* 1e3) # converting to mM (raw sample)

## [1] 7.616946 7.696381 7.687555

Statistical summary:
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x <- c_glucose_sample; n <- length(x); df <- n - 1; t = qt(0.975, df)
c(mean=mean(x), sd=sd(x), SE=sd(x)/sqrt(n), t = t, `t*SE` = t * sd(x)/sqrt(n))

## mean sd SE t t*SE
## 7.66696087 0.04353824 0.02513682 4.30265273 0.10815499

Which gives 95% confidence interval: [glucose] = 7.667± 0.057 mM

4.2.3 Distinguishing between 4.0mM and 4.5mM glucose

Similar to the calculation for ATP shown in section 4.1.1, first calculate the percentage error (coefficient of
variance) of this experiment:

cv = sx

x̄
= 0.057

7.667 = 0.00743

for x̄ = 4.0 and 4.5, sx = cvx̄ = 0.0297 and 0.0335, respectively.

To distinguish between the two, two sample t test is used. If n measurements are made on each concentration,
then

t = x̄1 − x̄2√
s2

1
n

+ s2
2
n

= 4.5− 4.0√
0.02972 + 0.03352

n

=
√

124.7n

then we can get a list of p values for each n:
n <- 2:8
df <- n - 1
t <- sqrt(124.7 * n)
p <- (1 - pt(t, df)) * 2
names(p) <- paste('n =', n)
round(p, 5)

## n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8
## 0.04026 0.00266 0.00020 0.00002 0.00000 0.00000 0.00000

as n increases, p decreases. When n = 2, p is already less than 0.05.

4.2.3.1 What difference would it make to your assay if you doubled the concentrations of
ABTS, GOD and POD?

Time required for incubation will be shorter and the final intensity of colors (and hence absorption) will be
the same.

5 Class Results

5.1 Data1

12 pairs of students produced incomplete results, so only 21/23 sets of results are given.
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ATP <- c(3.93, 4.04, 3.01, 3.94, 3.20, 3.15, 2.81,
4.07, 3.17, 3.05, 4.20, 3.15, 4.17, 3.05,
3.90, 2.97, 3.11, 4.13, 3.27, 3.85, 2.92)

ATP_sd <- c(0.164, 0.082, 0.080, 0.080, 0.140, 0.126, 0.139,
0.071, 0.140, 0.142, 0.002, 0.012, 0.240, 0.033,
0.051, 0.091, 0.187, 0.160, 0.053, 5.e-4, 0.218)

glucose <- c(6.89, 6.92, 8.36, 7.38, 7.10, 7.65, 7.70,
9.09, 7.34, 7.60, 8.92, 8.80, 8.50, 6.60,
3.81, 9.80, 7.73, 9.80, 7.67, 8.50, 8.63)

glucose_sd <- c(0.0880, 0.0104, 0.1560, 0.0150, 0.0603, 0.5900, 1.4580,
0.0470, 0.1640, 0.2810, 0.2500, 0.2000, 0.0010, 0.1180,
0.0170, 0.0425, 0.1500, 0.0530, 0.0440, 0.1400, 0.4800)

class_results <- tibble(ATP, ATP_sd, glucose, glucose_sd)
kable(tibble(`ATP conc`=ATP, `ATP sd`=ATP_sd,

`Glucose conc`=glucose, `Glucose sd`=glucose_sd))

ATP conc ATP sd Glucose conc Glucose sd
3.93 0.1640 6.89 0.0880
4.04 0.0820 6.92 0.0104
3.01 0.0800 8.36 0.1560
3.94 0.0800 7.38 0.0150
3.20 0.1400 7.10 0.0603
3.15 0.1260 7.65 0.5900
2.81 0.1390 7.70 1.4580
4.07 0.0710 9.09 0.0470
3.17 0.1400 7.34 0.1640
3.05 0.1420 7.60 0.2810
4.20 0.0020 8.92 0.2500
3.15 0.0120 8.80 0.2000
4.17 0.2400 8.50 0.0010
3.05 0.0330 6.60 0.1180
3.90 0.0510 3.81 0.0170
2.97 0.0910 9.80 0.0425
3.11 0.1870 7.73 0.1500
4.13 0.1600 9.80 0.0530
3.27 0.0530 7.67 0.0440
3.85 0.0005 8.50 0.1400
2.92 0.2180 8.63 0.4800

5.2 Preliminary graphical analysis

Density plots and histograms are used to examine the distribution of measurements:
op <- par(mfrow=c(2,2))
for(i in c('ATP', 'glucose')){

main = paste0('[', i, '] in 21 samples:'); xlab <- paste(i, 'concentration')
{

plot(density(class_results[[i]], bw = c(ATP = 0.1, glucose = 0.2)[i]),
main = paste(main, 'density plot'), xlab = xlab)

rug(class_results[[i]])
}
{

hist(class_results[[i]], breaks = 10, main = paste(main, 'histogram'), xlab = xlab)
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}
}
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Clealy, ATP has a clear bimodal distribution, with two peaks at around 3.1 and 4.0.

The distibution of glucose is affected by two outliers (the maximum and minimum). After their removal, a
bimodal distribution, which peaks at 7.6 and 8.8, is also produced:
op <- par(mfrow=c(1,2))
glucose <- glucose[glucose != max(glucose) & glucose != min(glucose)]
main = '[glucose] corrected'; xlab <- 'glucose concentration'
{

plot(density(glucose, bw = c(ATP = 0.1, glucose = 0.2)[i]),
main = paste(main, 'density plot'), xlab = xlab)

rug(glucose)
}
{

hist(glucose, breaks = 10, main = paste(main, 'histogram'), xlab = xlab)
}
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5.3 ATP concentration

5.3.1 Grouping and grouped confidence interval of mean

According to the plots, evidently there are two ATP concentrations, so we need to divide the 21 measurements
into two groups, and calculate their mean and CI separately.
ATP1 <- ATP[ATP < 3.5] # less than 3.5mM, around 3.0mM
ATP2 <- ATP[ATP > 3.5] # more than 3.5mM, around 4.0mM

For the ATP around 3.0:
x <- ATP1; n <- length(x); df <- n - 1; t = qt(0.975, df)
c(mean=mean(x), sd=sd(x), SE=sd(x)/sqrt(n), t = t, `t*SE` = t*sd(x)/sqrt(n))

## mean sd SE t t*SE
## 3.07166667 0.12995337 0.03751431 2.20098516 0.08256843

95% confidence interval: [ATP] = 3.07± 0.08 mM

For the ATP around 4.0:
x <- ATP2; n <- length(x); df <- n - 1; t = qt(0.975, df)
c(mean=mean(x), sd=sd(x), SE=sd(x)/sqrt(n), t = t, `t*SE` = t*sd(x)/sqrt(n))

## mean sd SE t t*SE
## 4.02555556 0.12620530 0.04206843 2.30600414 0.09700998

95% confidence interval: [ATP] = 4.03± 0.10 mM

10



5.3.2 Test for significance of the difference in concentration between the two groups

To test there is a significant difference between the two concentrations, t-test2 is used:
t.test(ATP1, ATP2)

##
## Welch Two Sample t-test
##
## data: ATP1 and ATP2
## t = -16.923, df = 17.66, p-value = 2.346e-12
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -1.0724720 -0.8353058
## sample estimates:
## mean of x mean of y
## 3.071667 4.025556

p = 2.3× 10−12 << 0.05; the two concentrations are significantly different

5.3.3 Test for diviation from given concentrations

The solutions were actually made up to be 3.0mM and 4.0mM ATP. Were they made up correctly? We need
two one-sample t tests using the given concentrations as the population mean, µ:

3.0mM: (H0: true concentration is 3.0mM)
t.test(ATP1, mu=3.0)

##
## One Sample t-test
##
## data: ATP1
## t = 1.9104, df = 11, p-value = 0.08249
## alternative hypothesis: true mean is not equal to 3
## 95 percent confidence interval:
## 2.989098 3.154235
## sample estimates:
## mean of x
## 3.071667

p = 0.082 > 0.05, failed to reject hypothesis. Solution made up correctly.

4.0mM: (H0: true concentration is 4.0mM)
t.test(ATP2, mu=4.0)

##
## One Sample t-test
##
## data: ATP2
## t = 0.60748, df = 8, p-value = 0.5604
## alternative hypothesis: true mean is not equal to 4
## 95 percent confidence interval:
## 3.928546 4.122566
## sample estimates:

2Specifically, Welch’s two sample t-test with unequal variances
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## mean of x
## 4.025556

p = 0.56 > 0.05, failed to reject hypothesis. Solution made up correctly.

5.4 Glucose

5.4.1 Grouping and grouped confidence interval of mean

By observing the plots, the boundary between the two concentrations of glucose is 8.0mM, so we can divide
them into two groups:
glucose1 <- glucose[glucose < 8.0]
glucose2 <- glucose[glucose > 8.0]

And calculate their 95% CIs separately:
lapply(list(glucose1=glucose1, glucose2=glucose2), function(x){

n <- length(x); df <- n - 1; t = qt(0.975, df)
c(mean=mean(x), sd=sd(x), SE=sd(x)/sqrt(n), t = t, `t*SE` = t*sd(x)/sqrt(n))

})

## $glucose1
## mean sd SE t t*SE
## 7.3254545 0.3921317 0.1182322 2.2281389 0.2634377
##
## $glucose2
## mean sd SE t t*SE
## 8.6857143 0.2612698 0.0987507 2.4469119 0.2416343

The confidence intervals are: 7.33± 0.27 mM and 8.69± 0.22 mM

5.4.2 Test for significance of the difference in concentration between the two groups

t-test performed to test for significance:
t.test(glucose1, glucose2)

##
## Welch Two Sample t-test
##
## data: glucose1 and glucose2
## t = -8.8301, df = 15.912, p-value = 1.573e-07
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -1.686972 -1.033548
## sample estimates:
## mean of x mean of y
## 7.325455 8.685714

p = 1.57× 10−7 << 0.05, which shows the two concentrations are significantly different.

5.4.3 Test for diviation from given concentrations

The solutions were actually made up to be 7.0mM and 9.0mM ATP. Were they made up correctly? We need
two one-sample t tests using the given concentrations as the population mean, µ:
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7.0mM: (H0: true concentration is 7.0mM)
t.test(glucose1, mu=7.0)

##
## One Sample t-test
##
## data: glucose1
## t = 2.7527, df = 10, p-value = 0.02038
## alternative hypothesis: true mean is not equal to 7
## 95 percent confidence interval:
## 7.062017 7.588892
## sample estimates:
## mean of x
## 7.325455

p = 0.020 < 0.05, reject null hypothesis. Solution made up incorrectly.

9.0mM: (H0: true concentration is 9.0mM)
t.test(glucose2, mu=9.0)

##
## One Sample t-test
##
## data: glucose2
## t = -3.1826, df = 6, p-value = 0.01901
## alternative hypothesis: true mean is not equal to 9
## 95 percent confidence interval:
## 8.444080 8.927349
## sample estimates:
## mean of x
## 8.685714

p = 0.019 < 0.05, reject null hypothesis. Solution made up incorrectly.

5.5 Radioactivity

5.5.1 Results of the sample

Counts in the H channel and C channel are shown below:
H <- c(14178.5, 13963, 14065, 14356.5, 13809, 14157.5, 13824.5, 14032, 14094.5, 14014)
C <- c(3411, 3472.5, 3386.5, 3516, 3375.5, 3418.5, 3438, 3464.5, 3513.5, 3438.5)

Statistical summaries are calculated:
n <- 10; df <- n-1; t = qt(0.975, df)
lapply(list(`H Channel`=H, `C Channel`=C), function(i){

c(mean=mean(i), sd=sd(i), SE=sd(i)/sqrt(n), t = t, `t*SE` = t*sd(i)/sqrt(n))
})

## $`H Channel`
## mean sd SE t t*SE
## 14049.450000 164.091176 51.890186 2.262157 117.383756
##
## $`C Channel`
## mean sd SE t t*SE
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## 3443.450000 48.359447 15.292600 2.262157 34.594264

95% confidence intervals:

• H channel: 14049.5± 117.38 cpm
• C channel: 3443.5± 34.59 cpm

5.5.2 Correction for overlap

Let counts due to 3H = X and counts due to 14C = Y . Let α be the fraction in H channel of all counts due
to 3H and β be the fraction in C channel of all counts due to 14C, so that for a sample with mixed isotopes:

H = αX + (1− β)Y

C = (1− α)X + βY

α and β can be determined by counting pure 3H and 14C, respectively. Here are the results:
c(H_in_H = mean(c(464814.5, 462463.5, 464775.5)),

H_in_C = mean(c(14825.5, 15057.5, 14210.0)),
C_in_H = mean(c(10295, 9842.5, 9922.5)),
C_in_C = mean(c(47989, 48868.5, 49133.5)))

## H_in_H H_in_C C_in_H C_in_C
## 464017.83 14697.67 10020.00 48663.67

which gives:

α = 464017.83/(464017.83 + 14697.67) = 0.9693
β = 48663.67/(48663.67 + 10020.00) = 0.8293

Plugging in sample results:

H = αX + (1− β)Y = 0.9693X + (1− 0.8293)Y = 14049.5(±117.38)
C = (1− α)X + βY = (1− 0.9693)X + 0.8293Y = 3443.5(±34.59)

Simplifying. . .

0.9693X + 0.1707Y = 14049.5(±117.38)
0.0307X + 0.8293Y = 3443.5(±34.59)

Solving for X: (note that uncertainties are added)

4.7075X + 0.8293Y = 60721.7(±507.31)
0.0307X + 0.8293Y = 3443.5(±34.59)

4.6769X = 57278.2(±541.9)
X = 12247.2(±115.9)

Solving for Y:
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0.9693X + 0.1707Y = 14049.5(±117.38)
0.9693X + 26.18Y = 108722.6(±1058.66)

26.01Y = 94673.1(±1176.04)
Y = 3639.4(±45.2)

which gives:

actual H (ATP) counts in 0.2mL sample = 12247.2(±115.9)
actual C (glucose) counts in 0.2mL sample = 3639.4(±45.2)

5.5.3 Specific Radioactivity

The radioactivity counting were done on 0.2mL sample. Our ATP concentration (section 4.1) is [ATP] =
3.268±0.054 mM and glucose concentration (section 4.2.2) is [glucose] = 7.667±0.057 mM. Thus, the specific
radioactivity of ATP and glucose are:

ATP: 12247.2(±115.9)/[0.2× 10−3 × 3.268× 10−3(±0.054× 10−3)] = 1.87(±0.05)× 1010 cpm mol−1

glucose: 3639.4(±45.2)/[0.2× 10−3 × 7.667× 10−3(±0.057× 10−3)] = 2.37(±0.05)× 109 cpm mol−1

(the ±0.05 comes from the maximal possible numerator (e.g. 12247.2 + 115.9 for ATP) over the least possible
denominator (e.g. (3.268− 0.054)× 10−3 for ATP))

6 Appendix

6.1 People should report all measurements to get a true 95% confidence interval

The statistical computations perfomed in section 5.3 and section 5.4 for class results are actually improper.

Let’s say 3 people are measuring a concentration whose true value is 4.0. Here are their results:
c1 <- rnorm(5, 4.0, 3) # 5 times, sd about 3
c2 <- rnorm(6, 4.0, 2) # 6 times, sd about 2
c3 <- rnorm(7, 4.0, 1) # 7 times, sd about 1

To calculate the true mean and sd, we need to combine their results i.e. to get list of 15 independent
measurements:

True mean:
mean(c(c1,c2,c3))

## [1] 3.526011

but if we take the mean of the mean (which in this practical we are supposed to do):
mean(c(mean(c1),

mean(c2),
mean(c3)))

## [1] 3.457526
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This gives a different mean from the true mean!

similarly, the true sd calculation is not possible if only the sd of each person’s results are given:

true sd:
sd(c(c1, c2, c3))

## [1] 1.989856

we might be supposed to calculate:
mean(c(sd(c1), sd(c2), sd(c3)))

## [1] 1.901431

(see: https://bit.ly/2Wj505F )

What I did was treating each person’s mean as one observation:
c(

mean = mean(c(mean(c1),
mean(c2),
mean(c3))),

sd = sd(c(mean(c1),
mean(c2),
mean(c3)))

)

## mean sd
## 3.4575262 0.8852985

6.2 The mathematical computation behind R functions used in this report

Statistical computations are done automatically by R. For completeness, I include here the actual mathematical
operations performed by the mathematical functions used in this report.

For an R vector x <- c(x1, x2, x3, x4, x5, ... xn):

mean(x) = x̄ =
∑
x

n
sd(x) = sx =

√∑
(x− x̄)2

n− 1 =

√√√√∑
x2 − (

∑
x)2

n
n− 1

lm(y ~ x) produces a linear model y = b0 + b1x

b1 = sxy

sx
=

∑
(x− x̄)

∑
(y − ȳ)∑

(x− x̄)2 = n
∑
xy −

∑
x

∑
y

n
∑
x2 − (

∑
x)2

and

b0 = ȳ − b1x̄ =
∑
y − b1

∑
x

n

However, I forced intercept to be at the origin (lm(y ~ 0 + x)), so actually b1 is calculated as:

b1 =
∑
xy∑
x2
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